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2.1 ALGEBRAIC STRUCTURES

Cryptography requires sets of integers and specific operations that are defined for those
sets. The combination of the set and the operations that are applied to the elements of the set is
called an algebraic structure. In this topic, we will define three common algebraic structures:
groups, rings, and fields.

Common Algebraic Structure

Common
algebraic structures

Groups Rings | Fields




Modular Arithmetic

The Modulus

If a is an integer and 7 is a positive integer. we define ¢ mod # to be the remainder
when a 1s divided by »n. The integer » is called the modulus. Thus, for any integer a,
we can rewrite Equation (4.1) as follows:

a=gn +r O =r <~n:q= |an|
a = |an| < n + (a mod n)
1l mod7 = 4; —i11mod7 = 3

Two integers a and b are said to be congruent modulo ». if (d mod n) =
(b mod n). This is written asa = b (mod#).”

73 = 4 (mod 23): 21 = —9 (mod 10)

Note that if a = 0 (mod »n). then n a.

Properties of Congruences
a =50 (modn)ifn (a— b).
b (mod ) implics & = a (mod n).
a = b {(modn)and b = ¢ (mod n) imply a = ¢ (mod n).

W -
Q
I

To demonstrate the first point, if nl{a — b). then (@ — b) = kn for some k.
So wc can writc a = b + kn. Thercforce. {@a mod r1) = (rcmaindcr when b + &kn is
divided by 121) = (rcmaindcr when b is divided by #) = (b mod n).

23 8 (mod 5) because. 23— B =15=:5%X3
—11 = 5(mod8) because —11 — 5 = —16 =8 X (—2)
81 = 0 (mod27) becausc: 81 — 0 =81 =27 X 3

=

Modular Arithmetic Operations
I. [(@amodn) + (bmod n)lmodn = (a + b)) mod n
2. [(a mod n) (bmod n)lmodn = (a — b)) mod n
X [(@amod n) % (bmod n)l modn = (a X b)) mod n

We demonstrate the first property. Define (a mod n) = r, and (b mod n) = r.
Then we can write a = 7, + jn for some integer j and b = 7, — kn for some integer

k. Then
(a + byYmodn = (rp, — jnn + rp + kn) modn
= (rg + 15 + (k + )n)y modn
= (r, +— 7rp) modn
= [(@amod n) + (b mod n)jmod n

Examples




lTmod8 = 3:15mod 8 =7 To find 117 mod 13. we can proceed as follows:
[(11 mod 8) + (15mod 8)] mod 8 = 10mod 8 = 2 12 = 121 = 4 (mod13)

(11 + 15)mod 8 = 26 mod 8 = 2 1 = (11%)% = 42 = 3 (mod 13)

[(11mod8) — (I5mod8)|mod8 = —4mod8 =4 1 =11 853 =192 =2 (mod 13)
(11 — 15)mod & = —4mod 8 = 4

[(11 mod 8) x (15mod 8)| mod 8 = 21 mod8 = 5
(11 x 15)mod 8 = 165mod 8 = 5

Properties of Modular Arithmetic
set of residues, or residue classes {mod n)

Define the set Z,, as the set of nonnegative integers less than 7:
Z,=1{0,1, ...,(n — 1))

precise, each integer in Z, represents a residue class. We can label the residue classes
(mod n)as|0], [1], [2], ... ,[7z — 1], where

[r] = la: ais an integer, a = r (mod n))

The residue classes (mod 4) are

Pl=1{-:,—16,=12,-8.—4,0,4:8/12,16, ...}
(=0, 1511, -7. -3, 1 590 1317 .}
2] ={...,—14,-10,—6,—2,2,6,10,14,18, ...}
Bl={....—13,-9,-5.—1,3,7,11,15,19, ... ]

reducing k modulo n.
Finding the smallest nonnegative integer to which k is congruent moduio n

if(a t+ b) =(a t c)(modn) then b = c(modn)
(5 + 23) = (5 + T)(mod8); 23 = 7(mod8)

if (a < b) = (@ X c)(mod n) thend = ¢ (mod n) ifais rclatively primec to n

Properties of Modular Arithmetic for Integers in Zn

. (w+x)ymodn = (x + wymodn
Commutative Laws

(w <xx)modn — (x + wimodn
[(w+x)+yImodn=[w+ (x + y)modn
[(w > x) < ylmoda — [w =< {(x X y)) modn

Distributive Law wx(x+ymoda=[(w X x)+ (wxXy)modn

Associative Laws

(O +w)modn = wmod n
(1 Xw)ymodn = wmodn
Additive Inverse (-w) Forcach we Z, therc existsaa zsuch thatw + z = Omod n

Identities
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The Euclidean Algorithm

=  Simple procedurs for determining the greatest commaon divisor of two positive integers.
« Two integers are relatively prime if their only comman positive integer factor is 1

Greatest Common Divisor

= |argest integer that divides both a and b
« god(0, 0 =10.

the positive integer ¢ is said to be the greatest common divisor of a and b if

1. cisadivisorof a and of b
2. Any divisor of a and b is a divisor of ¢

gcd(a, b) = max[k, suchthatk|a and k|b) ged(a, b) = ged(lal, |B]).

ged(B(), 24) = ged(6), —24) = 12

« 3 and b are relatively prime if gedia, by =1
Example:

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and &, and the positive divisors of
are 1, 3, 5, and 15. So 1 is the only integer on both lists.

Steps
a=gb +n 0<rmn<2~0
b = q2r i 0 < r = r
r=4qgn+n 0<m<=mn
Fa_2 = gufp_1 T 1y 0 = Fo = Ta_1
a-1 = gn+1tn 0
d = ged(a, b) = r,
Example
To find d = ged (o) = ged (1160718174, 316258250)
a = gqb + r 1160718174 = 3 = 316258250 4+ 211943424 | 4 = ged (316258250,
211943424)
b =gory + 13 216258ISD = 1 » 211943424 + 104314826 | 4 = ged(211943424,
104314826)
r = a3 + ry 211943424 = 2 X 104314826 + 3313772 | 4 = ged(104314876,
3313772)
Dividend IDivisor Quotient Remainder
a — 1160718174 bk = 316258250 g, = 3 r, = 211043434
B = 316255750 r o= 211943434 ga= 1 r, = 104314526
= 211943424 r, = 104314826 gy = 2 ry = 3313772




Euclidean Algorithm Revisited

- For any nonnegative integer a and any positive integer b,
- gcd(a, b) =gcd (b, a mod b)
o Example: gcd(55, 22) = gcd{22, 55 mod 22) = gcd{22, 11) = 11

Recursive function.
Euclid(a,b)
if (b=©) then return a;
else return Euclid(b, a mod b);
The Extended Euclidean Algorithm
calculate the greatest common divisor but also two additional integers and that satisfy the following equation
ax + by = d = gcd(a. b)

x and y will have opposite signs

(4.3), and wc assumc that at cach stcp i we can find intcgers x, and y; that satisfy

o T | - T e -
7, — ax; by;. Wc cnd up with the following scqucncc.
a=aqgqib + n ri = axy; + by
b = gor| + n r; = ax; + by
n =g + n s = axy + h}‘:x -2 = qplu-1 + Wy Tn — QX + b}"r:
= - I'n-1 = 4qnittu + 0

we can rearrange terms to write

n =2 — i q
Also,inrowsi — 1 and i — 2, we find the values
> = ax; > + by, > and r_y = ax;_y + by

Substituting into Equation (4.8), we have

rp= (ax;,_, + by; ») — (ax;,_y + by, 4)q,
= a(Xi—2 — gixi1) + OQi—2 — gVi—1)

But we have already assumed that r; = ax; + by.. Therefore.
X; = X; 2 — QiX; 1 and Vi = Vi 2 — gdi 1

Let uws now ook at an example with relatively large numbers o see the poaer
of this almporithm:

T find o — pod (@b) — god (116071E1T4, 31EESHEZSF)

- & L T ITSFTIRITE — 3 == JFPSHGISEZFSO 4+ F11S43474 | & = poad FUSISHISMm,
1194570

B o= ggary 4+ g ANAESEISO =— 1 = ZT1943R874 4 1043 TEENG | of — pod 270 1S54
D03 N EEG )

i o ek Z115434 g — F e IRE1LAEIS 4 IFNITTE | o = gl 1A EEDS,
AFLEATT2)

2 = g + oy 1043148 — 31 = 3AJ1ITTE + I1S27HOAE | &f — pod{33N3ITTE.
ISHTHOL |

F e il = T O IFNITIZE — Z = ISETHOI + IF 70 | o = podd 1 SHTEGS
I = ToEg )

g &gy + g 15ETHOYE — Il = 137TOH4 + TOHFTO | o = g 1 3 TOES, FOROT)

g = g g IETU= — 1 = 7070 4+ SIS | & = o TOOTOL 6791 )

s = amry -+ rm TN — 1 = 6G7TILL + F156 | o = pod{67314 FUSH)

ry o= gy - g Sl — 3l = ES1SE5 + 1T o = pod 2156, TIVFE]

Fg = e & o 20 55— X = 1O07TE + 0 | & = podf 1OTE, O) — 1OTHE

Therofores, d — pod(11I6OT1IELTA, S16Z58250 ) — 1O07TE

The Extended Euclidean Algorithm

Given two integers a and &, we often need to find other two integers, s and ¢, such that

L sxartXb= gcci*(n;-b}

The extended Eonclidean a.llggr\{vlﬂrlnocaég\ecglggm thrs]zg }Jar.] Ib\{ex{usilctn gng}L()t%?POt'com




I O 1 O 1 ‘ = 1
— 0 i 33 750 | 1 =T - : -
= /” 1 I 5 T = & x =3
=+ 1IN - - _
We get gped (161, 28) = 7. 3 1 ancd ¢ 6. The answers gcah be wested because wo have
( /l ) ’,(‘) + ():;';2_9 (,)
To show that two integers are  congruent, we use the

congruence operator ( =). For example, we write:

23 (mod 10)
13 (mod 5)

2
3

12 (mod 10) 13
8 (mod 5) S

2 mod 10 = 2,
12 mod 10 = 2,
22 mod 10 =2

In modular arithmetic 2, 12 and 22 are called congruent mod10

Concepts of C
|z={,,, —_8 > 12 2> .y

b h 4

10 —> mod 10 —>{ mod 10 —> mod 10 —> mod I

Il

[Zio=t0 . . .2 ... 93|

[ 8 = 2 = 12 = 22 @Gnod 10) |

Congruence Relationship

INVERSES

To find the inverse of a number relative to an operation
e Anadditive inverse ( relative to an additional operation) and
e A multiplicative inverse ( relative to a multiplication inverse )
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In Z,, two numbers a and b are additive inverses of each
other if

a—+b=0 (mod n)

In modular arithmetic, each integer has
an additive inverse. The sum of an
integer and its additive inverse is
congruent to 0 modulo n.

Example:
Find all additive inverse pairs in Z1o

Solution:
The six pairs of additive inverse are (0,0) (1,9) (2, 8) (3,7) (4,6) and (5,5)

Multiplicative inverse
In Z,, two numbers a and b are the multiplicative inverse of

each other if

In modular arithmetic, an integer may or
may not have a multiplicative inverse.
When it does, the product of the integer
and its multiplicative inverse is
congruent to 1 modulo n.

axb=1 (mod n)
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Find the multiplicative inverse of 8 in Z;o.

Solution

There is no multiplicative inverse because gcd (10, 8) =2 # 1.
In other words, we cannot find any number between 0 and 9
such that when multiplied by 8, the result is congruent to 1.

Find all multiplicative inverses in Zo.

Solution
There are only three pairs: (1, 1), (3, 7) and (9, 9). The
numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative

inverse.

The extended Euclidean algorithm finds
the multiplicative inverses of b in Z, when
n and b are given and gcd (n, b) =1.

The multiplicative inverse of b is the
value of t after being mapped to Z,.
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Find the multiplicative inverse of 11 in Z.

Solution

q ry I I 1> 4
O 26 11 0 1 W=
> | 11 4 [ -5 5
1 4 3 2 5 =
3 31 5 —7
- I 0 —7 26

2.4 MATRICES

In cryptography we need to handle matrices

Definition

A matrix of size [ x m

Matrix A:

[ rows

m columns

a ajo A1m
ar aro a2,
an apn - - A5
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Examples of matrices

[2 1 5 11] 2 (23 14 56 ] 0 0 [1 o}
Row matrix 12 21 18 8 g 0 1
12 10 8 31 : !

Column *

matrix Square

matrix
Operations and Relations

An example of addition and subtraction.

Addition and subtraction of matrices

1244_521+723
1 12 30| [3 2 10 § 10 20

C=A+B
2 0 -2 5 2 ] 7 2 3
-5 -8 10| [3 2 10 8§ 10 20
D=A-B

Downloaded from: annauniversityedu.blogspot.com



Figure shows the product of a row matrix (1 % 3) by a
column matrix (3 * 1). The result is a matrix of size 1
x 1.

Figure Multiplication of a row matrix by a column matrix

[i][igx'i |

In which: [|53=5x7+2x8+1x2

DETERMINANT
The determinant of a square matrix A of size m X m

denoted as det (A) is a scalar calculated recursively as
shown below:

I. Iftm=1,det(A)=a

2. If m>1,det (A)= z (-1)*tix a;; X det (Aj;)

Where A;; 1s a matrix obtained from A
by deleting the ith row and jth column.

The determinant is defined only for a
square matrix.
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Figure below shows how we can calculate the
determinant of a 2 %X 2 matrix based on the

determinant of a 1 X 1 matrix.

Figure Calculating the determinant of a 2 ~ 2 matrix

5 2 .
det . W=(_1)l+lx5><dct{4#+(—1)1+2><2><det3 » Sx4—-2x3=14

a) ap| _ < _ S
or |det = A1) X ax T app X axy
A ax»

Figure below shows the calculation of the determinant
of a 3 X 3 matrix.

Figure Calculating the determinant of a 3 * 3 matrix

0 -4 3 4 30

1
det -4 | = (=" x N2 x 2 x i3 >
¢ (-1) 5><del] 6 +(=1) 2 det2 6 +(=1) ><l><dct2 |

o W Wi
—_— 0 N

=) xS5x(H)  +  (<)x2x(24) +  (#)x1x(3)=-25
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2.5 Groups, Rings and Fields

Groups, rings. and fields are the fundamental elements of a branch of mathematics

known as abstract algebra, or modern algebra. In abstract algebra, we are concerned
with sets on whose elements we can operate algebraically; that is. we can combine

two elements of the set, perhaps in several ways. to obtain a third element of the set.
These operations are subject to specific rules, which define the nature of the set. By

convention, the notation for the two princpal classes of operations on set elements
is usually the same as the notation for addition and multiplication on ordinary num-
bers. However, it is important to note that, in abstract algebra, we are not limited to

ordinary anthmetical operations. All this should become clear as we proceed.

Groups
A group ¢, sometimes denoted by |7, = |, is a set of eblements with a binary operation

denoted by * that associates to each ordered pair (a. b) of elements in (7 an element
{a* B} in (7, such that the following axioms are obeyed:?

(A1) Closure: If a and b belong to (. then a* b is also in 6.
(A2} Associative: de(b+c) = (@-b)-cforalla. b, cin (.
(A3) Identity element: There is an element e in {5 such

thata+e = e=ag = a for all a in 5.

{Ad) Inverse elemeni: For each a in {7, there is an element a2’ in {7
cuch thatg+a@" = a"»a = &,
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If a group has a finite number of elements, it is referred to as a fnite proup.
and the order of the group is egual to the number of elements in the group.

Otherwise, the group is an infinite proup.
A proup is said to be abeliam if it satisfies the following additional condition:

i AS) Commntative: dgrh = hegforalla. bin &5,

The set of integers (positive, negative, and 0) under addition is an abelian group.
The set of nonzero real numbers under multiplication is an abelian group. The set
5g from the preceding example is a group but not an abelian group form > 2.

When the group operation is addition, the identity element is 0 the inverse
glement of @ is —a; amnd subtraction is defined with the following rule:
a—b=-a+ (—h)

Cyvooe Grour 'We define exponentiation within a group as a repeated appli-
cation of the group operator. so that @@ = a*a *a. Furthermore, we define a® = e
as the identity element, and a " = (@)%, where a’ is the inverse element of a
within the group. A group (7 is cyclic if every element of (7 is a power a® (k is an
integer) of a fixed element a = (5. The element a is said to penerate the group &
or to be a penerator of G, A cyclic group is always abelian and may be finite or
infinite.

The additive group of integers is an infinite cyclic group generated by the
element 1. In this case, powers are interpreted additively, so that » is the nth

power of 1.

Rings

A rimg R, sometimes denoted by (R, +, ], is a set of elements with two binary
operations, called sddition and multiplication ® such that for all a, b, ¢ in R the
following axioms are ocbeyed.

(AI-AS) ® is an abelian group with respect to addition; that is, & satisfies
axioms Al through A5 For the case of an additive group. we denote
the identity element as 0 and the inverse of a as —a.

(%1} Chosure under muoltplication: If @ and b belong to K, then al is also

in K.
(M2) Assocatvity of multiplication: a(bc) = (ab)e for all a, B, cin K.
(M3) Dstributive laws: alk + ¢ = ab + acforall a. b, cin K.

g+ by = ac + becforalla, b, cin K.

In essence, a ring is a set in which we can do addition, subtraction
[a — & = a + {—b)], and multiplication without leaving the set.
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With respect to addition and multiplication, the set of all n-square matrices over
the real numbers is a ring.

A ning 5 said to be commutative if it satsfies the following addittional condition:
(M4) Conmutativity of multiplication: ab — ba for all .5 in /.

Let § be the set of even integers (positive, negative, and ) under the usual opera-
tions of additton and multiplication. § is a commutative ring. The set of all r-square
matrices defined in the preceding example B not 8 commutative ring.

The set Iy of integers [, 1. ..., » — 1}.together with the anthmetic operations
mosdulo k. is 8 commutative ring ( Table 43

Mext. we define an intepral domain. which is a commutative ring that obeys the
following axioms.

(MS5) Multiplicative identity: There is an element 1 in ® such
thatal — la — aforall ain R.

(MA) Mo zero divisors: If @a. b in B and af = 0, then eithera = 0
or & = 0.

Let & be the set of integers, positive, negative, and 0, under the usual operations
of addition and multiplication. ¥ is an integral domain.

Fields
A field F, sometimes denoted by | F, +. =], is a set of elements with two binary opera-
tions. called addition and mudtiplication, such that for all @, b, ¢ in F the following
axkoms are obeyed.

(A L1-NM6) Fis an integral domain; that is, Fsatishes axioms Al through AS and

M1 through M.
(MT7T) Multiplicative inverse: For each a in F.except O, there is an element
a 'in Fsuch that ma™! = (2 ' = L

In essence, a field is a ==t in which we can do addstion, subtraction, multiplication.
and |:|j1.'i5i|:||r| without leaving the set. Division is defined with the following rale:
b = a(bh™ "L

Familiar examples of fields are the rational numbers, the real numbers, and the
complex numbers. Note that the set of all integers is not a field, because not
every element of the set has a multiplicative inverse; in fact, only the elements 1
and —1 have multiplicative inverses in the integers.
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( [ (A1) Closure under addition: If a und b belong to 5, thena + bisalsoin §

- S (A2) Associativity of addition: 4+ (B+0)=(a+b +clorallab.cins
= 4 g (A3) Additive ideatity: There is an element O in R such that
-E :) 3 a+0=0+a=aforallain§
¥ 0 E (Ad) Additive inverse: For each @ in § there is an element —a in §
.5 = = 2 suchthata + (—a)=(=a)+a=0
g 2 %)\ < (AS) Commutativity of addition: a+b=b+aforalla bin§
-8 E (MI) Closure under multiplication: If & and b belong to §, then ab is also in §
3 T\ B (M2) Associativity of multiplication: albe) = (ab)c forall a, b, cin §
[ % - (M3) Distributive laws: ath+c¢)=ab+acforalla, b,cin§
g (a+b)=ac+bclorallab,cinS
(M4) Commutativity of multiplication: ub=baforalla, bin§
(M35) Multiplicative identity: There is an element | in § such that
ol =la=aforullain§
(M6) No zero divisors: Ifa.bin §and ab = 0, then either
\ a=00rb=0
(MT) Multiplicative inverse: IfabelongstoSanda 0, there is an
\ elemento "in Ssuchthatag '=a 'a=1

Summarize the Axioms that defines Groups, Rings and Fields

2.6 FINITE FIELDS OF THE FORM GF(p)

The finite fAeld of aorder p™ is generally written GE{PpT) GF stands for Gakois
feld. in honor of the mathematician who first stedsed finite felds Two special cases
are of interest for our purposes. For m — 1. we have the finite field GF(p): this finite
feld has a different straciure than that for finite Gelds with 7 = 1 and is siedied in
this section. In Section 4.7, we look at finite fields of the form SF2%

Finite Fields of Order p
For a given prime. p_we define the fnite fizld of order p. GFE{p). as the st J'_'P of

integers {1, ___ g — 1} together with the arithmetic operations modulo =.
Recall that we chowed in Section 4.3 that the set F, of intepers
(1, ... .m — 1} together with the anthmeisc operabtons meoedulo w15 a commuaia-

Live ring ( Fabkxle 4 3). We urnher observed that any integer in #Fa has a multiplicative
inverse if and only if that inteper iz relatively primes o r [s2e discassion of
Eqguation (4.5 If i is prime, then all of the noneero integers in 7, are relatively prime
Lt m.and thercfore there exists a mualtiplicative inverse for all of the nonzerns intepors
in Z, Thus for Z g we can add the following properties to those listed in Table 4.3

Mlmblfplicative inverse (w~ | For cach we &,

e v 0O thene cxdisis @
= Ipsuch thok wr 3

= Y e )

The simplest fimite feld s GF2D. s arithmetic operations are easily summarized:-
—1

+ | 1 = |o 1 wo | —m wme

| ar 1 o | o n i ] ] —
1 a o 1 o 1 1 1 1

Auckd sticem hlultiplicagion Inoverses

In this case, ad-dition s eguivalent to thhe exclusive- 0K (XOR) operation., and
maultipd fcation is eguivalant bo the ogical AT ospeeratiosam.
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2.7 Symmetric Key Ciphers

The Feistel Cipher Structure

Feistel proposed a structure which alternates substitution and permutation. This follows the concept given
by claude Shannon to produce cipher that alternates confusion and diffusion.

Diffusion: making each plaintext bit affect as many ciphertext bits as possible.

Confusion: making the relationship between the encryption key and the ciphertext as complex as possible.

Input: a data block and a key
Partition the data block into two halves L and R.
Go through a number of rounds.
In each round,
— R does not change.
— L goes through an operation that depends on R and a round key derived from the key.

Feistel Cipher (Single round)

l—i-1 R i-1
Li Ri

Li= Ri1
Ri = Li1 X F(Ri-1, Ki)
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The Feistel Cipher Structure

Plaimntext (2wvw bits)

L . i =3
Rowumd 1 o w bits l v bits o
i ~
S=0 o =
L4 > ¥ R,
A ¥
B 3
Round i
i =
L
L; > ¥ R;
A ¥
B 3
Round mn
I I'<I"I
S=0 o =
LI"I Rn
L R

[ B |

[a i |

. 1

Ciphertext (2w bits)

2.8 SIMPLE DES

The most widely used encryption scheme is based on the Data Encryption Standard (DES) adopted in

1977.

Encryption

Takes an 8-bit block of plaintext and a 10-bit key as input and produces an 8-bit of cipher.

Decryption

Takes an 8-bit block of cipher and the same 10-bit key as input and produces an 8-bit of original

plaintext.

» Both substitution and transposition operations are used
« Itis acomplex, multi-phase algorithm
Five Functions to Encrypt

« IP: Initial permutation

o fi. Key-dependent scrambler ((complex) function))
Use a 8-bit key

Perform both permutation and substitution
*  SW (' simple permutation function)

Swap the two halves of data

« fragain (different key)

« IP™: Inverse permutation
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Li-hit key

EMNOCRYFITONN IMECRY PTTOMN

H-hit plaintext

e
— e

S-hit plaintexi

i

g
|
w
H-hit cipheriext S-hil ciphertexi

S-DES Algorithm

We can concisely express the encryption algorithm as a composition of function: 1P © fi,® SW ° fis°
IP

OR AS:

+  Cipher = IP*(fio(SW(fia(IP(plaintext)))))

« Ky =P8(Shift(P10(key)))

« K, =P8(Shift(Shift(P10(key))))

*  Plaintext = IP™(fis(SW(fio(IP(Ciphertext)))))
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Fig: One round of Feistel system

e Assume the full message consists of only one block.

e The message has 12 bits and is written in the form Lo Ro, where Lo consists of the first 6 bits and
R o consists of the last 6 bits.

e The keyK has 9 bits. The i'" round of the algorithm transforms an input L i1 R i to the output L R
(using an 8-bit key K, , derived fromK.

e The main part of the encryption process is a function F(R i1 ,Kz) that takes a 6-bit input and an 8-
bit input K| and produces a 6-bit output.

e The output for the i'" round is defined as follows:

e Li=RixandRi =Lt ¢ FR1,Ky)

e This operation is performed for a certain number of rounds, say n, and produces the ciphertext
LnRn.

e Thefirst step takes RnLy and gives the output [Ln] [Rn®f(Ln.Ks)}.

Encryption

8-Bit Plaintext: Make up by sender

1 1 1 1 O O 1 1

IP: Initial Permutation (constant)
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2163|1148

IP"': Inversed Permutation (constant)

41 1|1 3| 5| 7| 2

Complex function fi:

E/P: Expansion/Permutation Rule (constant)

4111 2] 32| 3

The first function is an expander.

It takes an input of 6 bits and outputs 8 bits.

This means that the first input bit yields the first output bit, the third input bit yields both the fourth and the

sixth output bits, etc.

For example, 011001 is expanded to 01010101.

The rep is
N4 N1 N2 N3

N2 N3 Ny Ny

P4: Permutation 4 (constant)

21 41 3 1

The main components are called S-boxes. We use two:
S51=101010001 110 011 100 111 000
001 100 110 010 000 111 101 011
S2=100000 110 101 111 001 011 010
101 011 000 111 110 010 001 100 -

The input for an S-box has 4 bits.
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The first bit specifies which row will be used: O for the first row, 1 for the second. The other 3 bits represent
a binary number that specifies the column: 000 for the first column, 001 for the second, ..., | Il for the last

column.
The output for the S-box consists of the three bits in the specified location.

The key K consists of 9 bits. The key Ki for the ith round of encryption is obtained by using 8 bits of K,
starting with the z'th bit.

| - .

% bits

h 4

LR

4 L 2

TR, )
Fig: The function f( R i1ki)

We can now describe F(RI-1, /K i). The input R i1 consists of 6 bits. The expander function is used to expand
it to 8 bits.

The result is XORed with K, to produce another 8-bit number. The first 4 bits are sent to S1. and the last 4
bits are sent to S2.

Each S-box outputs 3 bits, which are concatenated to form a 6-bit. number. This is F{FB-I, K1).

Key Generation
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S = N

R, !
| ms-= I | ms—= I

o]

. g -3 1

Example of Encryption

X:8-bit Plaintext

IP8: Initial permutation vector
Permutation of X

Splitting into LO,RO

E/P 8: Expansion permutation of RO
EP(0): Expanded RO

K1: Key 1

EP(RO) xor K1

Rlolr|~|lo|lo|o|-
= =1 NI B =)
RlRr|lo|lw|k|k|o|o
=l E ==
Rlolr|lF k|| |E

olr|r|alkr|kr NP
ol |Ikr|lw|k
olo|lo|lw|kr |||k

Analysis:

Brute force is feasible.
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2.9 Block Cipher Principles

A block cipher is an encryption/decryption scheme in which a block of plaintext is treated as a whole and

used to produce a ciphertext block of equal length.
A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. Examples of

classical stream ciphers are the autokeyed Vigenere cipher and the Vernam cipher.

Key Bit-stream Kev Bit-stream
( K)y—>| generation { Ky—>{ generation
algorithm algorithm
Cryptographic Cryptographic
hit stream { &, ) bit stream { k; )
Plaintext Ciphertext Plaintext
. _|_ » . .
LPy) Lcp) (pi)
ENCYPTION
b bits
| Plantext |
Key Encryption

(K) ’ algorithm

Ciphertext

b bits
DECRYPTION
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2.10 DATA ENCYPTION STANDARD

Bd-bit plainbext td-hit key

K, a8 ¢
Round 1 Permuted choice 2
(%}
K: 48 ¢ 56
Round 2 Permuted choice 2 Left circular shift

¥ ¥
K 48 56
| Round 16 '. e = I Permuted choice 2 '-}{ Left circular shift .

32-bit swap

Inverse imitial
permutation

6d-hit ciphertext
Block Diagram of DES

As with any encryption scheme, there are two inputs to the encryption function: the plaintext to be encrypted
and the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length.

Input of 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits to produce the
permuted input. This is followed by a phase consisting of sixteen rounds of the same function, which
involves both permutation and substitution functions. The output of the last (sixteenth) round consists of
64 bits that are a function of the input plaintext and the key. The left and right halves of the output are
swapped to produce the preoutput.
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Finally, the preoutput is passed through a permutation that is the inverse of the initial permutation function,
to produce the 64-bit ciphertext. 56-bit key is used. Initially, the key is passed through a permutation
function. Then, for each of the sixteen rounds, a subkey (K;) is produced by the combination of a left
circular shift and a permutation. The permutation function is the same for each round, but a different subkey
is produced because of the repeated shifts of the key bits.

(@) Imitial Permywtation (TFP)

58 S0 42 34 26 15 10 2
& 52 44 i 28 20 12 4
a2 54 At 38 3 22 14 D
(il 56 A8 iy 32 24 165 b L
57 449 41 33 25 17 o 1
59 51 43 35 27 19 11 3
(i | 53 45 37 29 21 13 5
[V 55 47 39 31 23 15 T
(b) Inverse Initial Permutation (IP-1)
sy 5 A8 16 S5 24 i 32
39 7 47 15 55 23 63 31
38 [ A 14 54 22 62 34h
37 5 45 13 53 21 o1 20
365 L L E 12 52 20 (ol 28
35 3 43 11 51 19 59 27T
34 2 42 10 S 15 58 2w
33 1 41 9 49 17 57 25
Input PlainText M

.-1-?', :w: .'w_':_ ;1-:?’4 ;Wi .-’H’t-, ;M7 ;'\-':fﬁ

My Myg My My Mz My M;s My,

Mz Mz My My My Mz Mz Mo

Mrzs Mys My My My My My My
Mizz Mizqy Msis Msy My Mig Mg My
My Mg Mey M i _
Mg Msy Msy Msy; Msz; Msy  Mss  Msg
Msy Msg Msg Mg, Mg Mg Mg Mg,

Where M; is a binary digit. Then the permutation X=IP(M)
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NA S5 N S N g A g | A el AT 155 A 10D A -l

=

A ey AN <o A gy AA = A os A oy Ay o A
Mo M sy A g, M 5 M 3p M 2o Nd g4 M
NA P | ;'ﬁ-’f_—:,:;_ J"L-f;b;_ ;"L-f;.: ] N 3P N ol N 15 ;"L-f;».e
AT =~ LB Nl gy Nl 55 Al 55 N g~ Ad g Ay
;""f_:.u.;. ;'1-’!_—7. 1 iy % 3 A 5 % - N 1y N 11 N 3
NA et | ;'ﬁ*’f_—?. 3 J"L'f;:t % ol % L] A =1 A 13 J'Lf_:.
NA o AL <5 AA o AA =g AA =y Ad~5 Ay 5 AA
The inverse permutation Y = IP-1(X) = IP-1(IP(M))
(c) Expansion Permutation (1)
32 1 2 3 4 5
4 5 & 7 8 o
8 L") 10 11 12 13
12 13 14 15 15 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 )
2B ) 30 31 32 1
(d) Permutation Function (P)
16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 L")
19 13 30 & 22 11 4 25

The left and right halves of each 64-bit intermediate value are treated as separate 32-bit quantities,
labeled L (left) and R (right).

L.; = R_.-_|

R; = L;_ @ F(R;_,. K;)
The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by
using a table that defines a permutation plus an expansion that involves duplication of 16 of the R
bits. The resulting 48 bits are XORed with Ki. This 48-bit result passes through a substitution
function that produces a 32-bit output.

The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input and
produces 4 bits as output.

The first and last bits of the input to box Si form a 2-bit binary number to select one of four
substitutions defined by the four rows in the table for Si.

The middle four bits select one of the sixteen columns. The decimal value in the cell selected by
the row and column is then converted to its 4-bit representation to produce the output. For example,
in S1, for input 011001, the row is 01 (row 1) and the column is 1100 (column 12). The value in
row 1, column 12 is 9, so the output is 1001.
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the input word is

... defghi hijklm Imnopq ...
this becomes

... efgh ijkl mnop ...

-— 32 bils — -—— 32 bits — —-—— 2% hity —» —«—— 7] bits —»
| & | Ciy | b,
f ¥ - 1 r "
I I
| - -
/ Expansion/permutation’y, Left shift(s) Left shifi(s)
| (E table) !
1)
| 48
f
[ \  pe fon/ i
| . rmutation’coniraction
/ F XOR = 7s K \  (Permuted choice 2) /
)
)
[ 48

32

L

I
I
I
I
1
]
I
I
I
I
Substitution/choice :
(S-box) :
I
I
I
I
I
I
I
I
I

Permutation I

: [

Round Function

Key Generation
64-bit key is used as input to the algorithm. The bits of the key are numbered from 1 through 64.

The key is first subjected to a permutation governed by a
table labeled Permuted Choice One. The resulting 56-bit key is then treated as

two 28-bit quantities, labeled CO and DO. At each round, Ci-1 and Di-1 are separately subjected to
a circular left shift or (rotation) of 1 or 2 bits.

These shifted values serve as input to the next round. They also serve as input to the part labeled
Permuted Choice Two, which produces a 48-bit output that serves as input to the function

F(Ri-1, Ki).
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R (32 bits) |

l

7

48 bils
I

K (48 bils)
|

ll l| {SLJSLJSl 11\535

)

\
-
L
i
e

| 32 hits |

SUBSTITUTION BOX

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application of
the subkeys is reversed.

The Avalanche Effect
That a small change in either the plaintext or the key should produce a significant change in the cipher text.
a change in one bit of the plaintext or one bit of the key should produce a change in many bits of the cipher

text. This is referred to as the avalanche effect.
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(a) Input Key

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 6
(b) Permuted Choice One (PC-1)

57 49 41 33 25 17 O
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 (&lN] 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 (v} 61 53 45 37 29
21 13 5 28 20 12 4

(c) Permuted Choice Two (PC-2)
14 17 11 24 1 5 3 28
15 (i 21 10 23 19 12 4
26 8 16 7 27 20 13 2
41 52 31 37 47 35 30 40
51 45 33 48 44 49 39 56
34 53 46 42 50 36 29 32
(d) Schedule of Left Shifts
RoundNumber 1 2 3 4 5 6 7 § 9 1283 4 151
BisRotated 1 1 22 22 1 2 1 2211 1 1
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Substitution
Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext
element or group of elements.

Permutation

A sequence of plaintext elements is replaced by a permutation of that sequence. That is, no
elements are added or deleted or replaced in the sequence, rather the order in which the elements
appear in the sequence is changed.

The Strength of DES

The Use of 56-Bit Keys
With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 * 1016 keys.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics of
the DES algorithm. The focus of concern has been on the eight substitution tables, or S-boxes, that
are used in each iteration. Because the design criteria for these boxes, and indeed for the entire
algorithm, were not made public,

There is a suspicion that the boxes were constructed in such a way that cryptanalysis is possible
for an opponent who knows the weaknesses in the S-boxes. This assertion is tantalizing, and over
the years a number of regularities and unexpected behaviors of the S-boxes have been discovered.

Timing Attacks

A timing attack is one in which information about the key or the plaintext

is obtained by observing how long it takes a given implementation to perform

decryptions on various ciphertexts. A timing attack exploits the fact that an encryption or
decryption algorithm often takes slightly different amounts of time on different inputs.

DES appears to be fairly resistant to a successful timing attack but suggest some avenues to
explore. Although this is an interesting line of attack, it so far appears unlikely that this technique
will ever be successful against DES or more powerful symmetric ciphers such as triple DES and
AES.

2.11 DIFFERENTIAL AND LINEAR
CRYPTANALYSIS

Differential Cryptanalysis
The differential cryptanalysis attack is complex; provides a complete description. The rationale
behind differential cryptanalysis is to observe the behavior of pairs of text blocks evolving along
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each round of the cipher, instead of observing the evolution of a single text block. The original
plaintext

block m to consist of two halves m0O and m1 . Each round of DES maps the right-hand input into
the left-hand output and sets the right-hand output to be a function of the left-hand input and the
subkey for this round. So, at each round, only one new 32-bit block is created. Intermediate
message halves are related as

M+ = mi-1 Bf(m;, K)), 1=1,2...,16

[n differential cryptanalysis, we start with two messages, m and m', with a
known XOR difference Am = m & m', and consider the difference between the
Intermediate message halves: Am; = m; ® m’. Then we have

Amyy = m &m' iy
= [m_ & t(m, K)]| & [m';_ B f(m';, K))]
= Am_1 B [f(m;, K)) & f(m', K)]

suppose that many pairs of inputs to fwith the same difference yield the same output difference if
the same subkey is used. if a number of such differences are determined, it is feasible to determine
the subkey used in the function F.

Linear Cryptanalysis

This attack is based on finding linear approximations to describe the transformations performed in
DES. This method can find a DES key given known plaintexts, as compared to chosen plaintexts
for differential cryptanalysis. Although this is a minor improvement, because it may be easier to
acquire known plaintext rather than chosen plaintext, it still leaves linear cryptanalysis infeasible
as an attack on DES.

For a cipher with -bit plaintext and cipher text blocks and an -bit key, let the plaintext block be
labelled P[1].....p[n], the cipher text block C[1]......,C[n], and the key K[1], ,K[m] .Then define

Alij,..., k] = Al @ A[]]® ... ® AlK]

The objective of linear cryptanalysis is to find an effective linear equation of the form

Play, ag, ..., &, S CIBy, By, - Bol = Ky, 1 7]
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2.12 BLOCK CIPHER DESIGN PRINCIPLES

DES Design Criteria

The criteria used in the design of DES, focused on the design of the S-boxes and on the P function
that takes the output of the S-boxes .The criteria for the S-boxes are as follows.

1. No output bit of any S-box should be too close a linear function of the input bits. Specifically,
if we select any output bit and any subset of the six input bits, the fraction of inputs for which this
output bit equals the XOR of these input bits should not be close to 0 or 1, but rather should be
near 1/2.

2. Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits)
should include all 16 possible output bit combinations.

3. Iftwo inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits.

4. Iftwo inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at least
two bits.

5. If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the
two outputs must not be the same.

6. For any nonzero 6-bit difference between inputs, no more than eight of the
32 pairs of inputs exhibiting that difference may result in the same output difference.

7. This is a criterion similar to the previous one, but for the case of three S-boxes.
The criteria for the permutation P are as follows.

1. The four output bits from each S-box at round are distributed so that two of them affect (provide
input for) “middle bits” of round (i+1) and the other two affect end bits. The two middle bits of
input to an S-box are not shared with adjacent S-boxes. The end bits are the two left-hand bits and
the two right-hand bits, which are shared with adjacent S-boxes.

2. The four output bits from each S-box affect six different S-boxes on the next round, and no two
affect the same S-box.

3. For two S-boxes j,k if an output bit from Sj affects a middle bit of Sk on the next round, then
an output bit from Sk cannot affect a middle bit of Sj . This implies that, for j=k , an output bit
from Sj must not affect a middle bit of S;.
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Number of Rounds

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a
relatively weak F. In general, the criterion should be that the number of rounds is chosen so that
known cryptanalytic efforts require greater effort than a simple brute-force key search attack. The
differential cryptanalysis attack requires 255.1 operations, whereas brute force 255 requires. If
DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force
key search.

Design of Function F

It must be difficult to “unscramble” the substitution performed by F. One obvious criterion is that
F be nonlinear, as we discussed previously. The more nonlinear F, the more difficult any type of
cryptanalysis will be. There are several measures of nonlinearity, which are beyond the scope of
this book. In rough terms, the more difficult it is to approximate F by a set of linear equations, the
more nonlinear F is.

S-Box Design

. Random: Use some pseudorandom number generation or some table of random digits to
generate the entries in the S-boxes. This may lead to boxes with undesirable characteristics for
small sizes but should be acceptable for large S-boxes.

. Random with testing: Choose S-box entries randomly, then test the results against various
criteria, and throw away those that do not pass.
. Human-made: This is a more or less manual approach with only simple mathematics to

support it. It is apparently the technique used in the DES design. This approach is difficult to carry
through for large S-boxes.

. Math-made: Generate S-boxes according to mathematical principles. By using
mathematical construction, S-boxes can be constructed that offer proven security against linear
and differential cryptanalysis, together with good diffusion.

Key Schedule Algorithm

The key is used to generate one subkey for each round. In general, we would like to select subkeys
to maximize the difficulty of deducing individual subkeys and the difficulty of working back to
the main key. The key schedule should guarantee key/ciphertext Strict Avalanche Criterion and
Bit Independence Criterion.
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2.13 BLOCK CIPHER MODES OF OPERATION

A block cipher takes a fixed-length block of text of length bits and a key as input and produces a -bit block
of ciphertext. If the amount of plaintext to be encrypted is greater than b bits, then the block cipher can still
be used by breaking the plaintext up into b-bit blocks.

Mode Description Typical
Application
Electronic | Each block of 64 plaintext bits is encoded | Secure transmission
Codebook | independently using the same key. of single values.

(ECB)

Cipher Block The input to the encryption algorithm is | General-purpose
Chaining the XOR of the next 64 bits of plaintext | block oriented
and the preceding 64 bits of ciphertext.

(CBC) Authentication
Input is processed bits at a time. Preceding | General-purpose
ciphertext is used as input to the | stream oriented

Cipher encryption  algorithm  to  produce o

Feedback pseudorandom output, which is XORed transmission

(CFB) with plaintext to produce next unit of
ciphertext.

Authentication

Outout Similar to CFB, except that the input to the | Stream-oriented

Fee th:ack encryption algorithm is the preceding | transmission over

(OFB) encryption output, and full blocks are | noisy channel

used.
Each block of plaintext is XORed with an | General-purpose
encrypted counter. The counter is | block oriented
incremented for each subsequent block. o
Counter Transmission
(CTR) Useful for high-
speed
requirements
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ELECTRONIC CODEBOOK (ECB)

In which plaintext is handled one block at a time and each block of plaintext is encrypted using the same
key. The term codebook is used because, for a given key, there is a unique ciphertext for every -bit block
of plaintext.

H
3

I_y Decrypt |_> Decrypt « s I_p Decrypt

h 4

{(b) Decryption

)
-

)
-

Ci=E(K, P)

i=1, N
Pi=D(K,C) j=1

) !N

CIPHER BLOCK CHAINING MODE

The input to the encryption algorithm is the XOR of the current plaintext block and the preceding ciphertext
block; the same key is used for each block. In effect, we have chained together the processing of the
sequence of plaintext blocks. The input to the encryption function for each plaintext block bears no fixed
relationship to the plaintext block.

(j = E(K, [(, xS P}-])
D(K.C)) = D(K. E(K.[C;-1 @ P))
G1@DK.C)=Ca@CGa@P=P
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= EK.[P@IV) Pr=D(K.C)@IV

CG=EK[P®Ca)j=2...N| P=DKC)®Cy j=2 ...

(a) Encryption

K ¥ K ¥ K ¥

I—; Decrypt I—; Decrypt 0 I—) Decrypt
Y L | c A
| ,E 3 4 h) N-1 =L
AL Ny
i y

I Py I I Py I I Py I

{(b) Decryption

The 1V must be known to both the sender and receiver but be unpredictable by a third party. In particular,
for any given plaintext, it must not be possible to predict the 1V that will be associated to the plaintext in
advance of the generation of the IVV. For maximum security, the IV should be protected against unauthorized
changes. This could be done by sending the 1V using ECB encryption.

CIPHER FEEDBACK MODE

For AES, DES, or any block cipher, encryption is performed on a block of b bits. In the case of DES, b =
64 and in the case of AES, b = 128.

The CFB scheme, the unit of transmission is s bits; a common value is s = 8. As with CBC, the units of
plaintext are chained together, so that the ciphertext of any plaintext unit is a function of all the preceding
plaintext. In this case, rather than blocks of b bits, the plaintext is divided into segments of s bits

The input to the encryption function is a b-bit shift register that is initially set to some initialization vector
(IV).The leftmost (most significant) bits of the output of the encryption function are XORed with the first
segment of plaintext P; to produce the first unit of ciphertext C,, which is then transmitted. In addition, the
contents of the shift register are shifted left by bits, and C1 is placed in the rightmost (least significant) bits
of the shift register. This process continues until all plaintext units have been encrypted.
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For decryption, the same scheme is used, except that the received ciphertext unit is XORed with the output

of the encryption function to produce the plaintext unit. Note that it is the encryption function that is used,
not the decryption function.

C, = P, @ MSB{E(K,1V)]
P, = C; @ MSB,[E(K. V)]

I =1V L =1V
I, = LSB, il ) 1 €y j=2, e, N R v T B | [
0, = E(K.I) i=1,..,N |0 =EKIL) j=1,...,N

C; =P,®MSB(0O) j=1,...N | P,=CG@MSB(0) j=1,...,N

Downloaded from: annauniversityedu.blogspot.com
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Seelorid| [hsesrd P el I sl et 16 s
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x Isils = Isils oo = Inilks

5 Inils 5 il 5 Inils

(a) Encry pton

. w -— k J
- Shill regisier Shill regsler
& — glhiik |5 heis #— 7 s | & leiis
K K ¥ K ¥
|—r Encrypl |—)- Enry pt |—)- Enry pl

J: ¥

= bord| Diserd P eled| 16 seeaord Pradecd| 1N sesnd
4 s | & — hiis #hits | &— 3 hils ghlits | &— 3 hils

¢ B[]

£ sil= £ sil= £ Isil=

I
W

-
=

-

-

b

-] ™

F ]

5 Inils 5 il 5 Inils

(b} Decry pion

OUTPUT FEEDBACK MODE

The output feedback (OFB) mode is similar in structure to that of CFB. The output of the encryption
function that is fed back to the shift register in OFB,

whereas in CFB, the ciphertext unit is fed back to the shift register. The other difference is that the OFB
mode operates on full blocks of plaintext and ciphertext, not on an b-bit subset.
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{b) Deorypiion

Ci=P,®E(K, [(,1@ Pj'l])
= G @ E(K, [Ci-1 @ Pj-1])

I, = Nonce I, = Nonce

[ = 0j_4 J= 2w N I =LSBy (i )| Gy j=2,...,1 N

O =E(K, 1) .j=YL:N O; = E(K, I) J=1 0N
Ci=P®0;, j=1,....N-1 Pi=C@® 0; j=1....,N—-1
Cy = Px @ MSB,(Oy) Py = Cy@ MSB,(Oy)

COUNTER MODE

The counter (CTR) mode has increased recently with applications to ATM (asynchronous transfer mode)
network security and IP sec (IP security). The counter is initialized to some value and then incremented by
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1 for each subsequent block (modulo 2° where is the block size). For encryption, the counter is encrypted
and then XORed with the plaintext block to produce the ciphertext block; there is no chaining. For
decryption, the same sequence of counter values is used, with each encrypted counter XORed with a
ciphertext block to recover the corresponding plaintext block. Thus, the initial counter value must be made
available for decryption.

G=P@EKT) j=1..N-1\B=GOEKT) j=1. N-I
Cy = Py@®MSB[E(K, Ty) P, = C, @ MSBJEK.T,)

1 [
1 1
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(b} Decrypton

Advantages of CTR Mode:

Hardware efficiency: Unlike the three chaining modes, encryption (or decryption) in CTR mode can be
done in parallel on multiple blocks of plaintext or ciphertext. For the chaining modes, the algorithm must
complete the computation on one block before beginning on the next block. This limits the maximum
throughput of the algorithm to the reciprocal of the time for one

execution of block encryption or decryption. In CTR mode, the throughput is

only limited by the amount of parallelism that is achieved.
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Software efficiency: Similarly, because of the opportunities for parallel execution in CTR mode,
processors that support parallel features, such as aggressive pipelining, multiple instruction dispatch per
clock cycle, a large number of registers, and SIMD instructions, can be effectively utilized.

Preprocessing: The execution of the underlying encryption algorithm does not depend on input of the
plaintext or ciphertext. Therefore, if sufficient memory is available and security is maintained,
preprocessing can be used to prepare the output of the encryption boxes that feed into the XOR functions.

Random access: The th block of plaintext or ciphertext can be processed in random-access fashion. With
the chaining modes, block C; cannot be computed until the i-1 prior block are computed. There may be
applications in which a ciphertext is stored and it is desired to decrypt just one block; for such applications,
the random access feature is attractive.

Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this section.

Simplicity: Unlike ECB and CBC modes, CTR mode requires only the implementation of the encryption
algorithm and not the decryption algorithm. This matters most when the decryption algorithm differs
substantially from the encryption algorithm, as it does for AES. In addition, the decryption key scheduling
need not be implemented.

2.15 ADVANCED ENCRYPTION STANDARD

AES is a block cipher intended to replace DES for commercial applications. It uses a 128-bit block
size and a key size of 128, 192, or 256 bits.

Each full round consists of four separate functions: byte substitution, permutation, arithmetic
operations, over a finite field, and XOR with a key.

AES Parameters

Key Size (words/bytes/bits) 4/16/128 | 6/24/192 | 8/32/256
Plaintext Block Size | 4/16/128 | 4/16/128 | 4/16/128
(words/bytes/bits)

Number of Rounds 10 10 14
Round Key Size (words/bytes/bits) 4/16/128 | 4/16/128 | 4/16/128
Expanded Key Size (words/bytes) 44/176 52/208 | 60/240

Detailed Structure

1. AES instead processes the entire data block as a single matrix during each round using

substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]. Four
distinct words (128 bits) serve as a round key for each round.
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3. Four different stages are used, one of permutation and three of substitution:

* Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block
« ShiftRows: A simple permutation

» MixColumns: A substitution that makes use of arithmetic over

» AddRoundKey: A simple bitwise XOR of the current block with a portion

of the expanded key.

4. The structure is quite simple. For both encryption and decryption, the cipher begins with an
AddRoundKey stage, followed by nine rounds that each includes all four stages, followed by a
tenth round of three stages.

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and ends
with an AddRoundKey stage. Any other stage, applied at the beginning or end, is reversible
without knowledge of the key and so would add no security.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be
formidable. The other three stages together provide confusion, diffusion, and nonlinearity, but by
themselves would provide no security because they do not use the key. We can view the cipher as
alternating operations of XOR encryption (AddRoundKey) of a block, followed by scrambling of
the block (the other three stages), followed by XOR encryption, and so on.This scheme is both
efficient and highly secure.

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns stages, an
inverse function is used in the decryption algorithm.
For the AddRoundKey stage, the inverse is achieved by XORing the same round key to the block.

Downloaded from: annauniversityedu.blogspot.com



Key

Plaintext {16 bytes) Plaintext
(16 bytes) I Expand key | (16 bytes)
} ¢ 1
Add round key |¢—— w][0, 3] Add round key
| | — |
! 1 -
I Substitute bytes | | Inverse sub bytes I E
v 1 5
L Shift rows Inverse shift rows
= | | | | =
- 8 e MR NSRS s  ——
-

I Mix columns | _l | Inverse mix cols I

v 1
I Add round key I-d—— w4, 7] —bl Add round key I
v 7 -
- | Inverse sub bytes I E
- f :
° | Inverse shift rows I
I Substitute bytes | .
i .
= |  Shift rows | :
B v 1
= I Mix columns | _l | Inverse mix cols I
v 1
I Add round key I-q—— w36, 39] —bl Add round key I -
I T :
I Substitute bytes | | Inverse sub bytes I =
= ! f
o — —
E I Shift rows | | Inverse shift rows I
I Add round key |-I— w40, 43] —DI Add round key I
1] i)
Ciphertext Ciphertext
(16 bytes) (16 bytes)
(a) Encryption (b) Decryption

BLOCK DIAGRAM OF AES

8. The decryption algorithm makes use of the expanded key in reverse order. The decryption
algorithm is not identical to the encryption algorithm.

9. The final round of both encryption and decryption consists of only three Stages. This is a
consequence of the particular structure of aes and is required to make the cipher reversible.

Substitute Bytes Transformation

The forward substitute byte transformation, called SubBytes, is a simple table lookup. AES
defines a 16X16 matrix of byte values, called an S-box. That contains a permutation of all
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possible 256 8-bit values. Each individual byte of State is mapped into a new byte in the
following way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits
are used as a column value. These row and column values serve as indexes into the S-box to
select a unique 8-bit output value. For example, the hexadecimal value {95} references row 9,
column 5

Y

., . = . ] K] ] K]
S0 | So. |Su,z So3 S-box So0 | Sowr] Soz | Sos
; 5 | K] ! | v "
S1.0 LLkys | Sia sto LS Fiz | Sha
;

Sa0 | 521 | 522 | 523 sho | 52 | 522 | 52
530 | 531 | 532 | 533 S30 | 831 | 532 | 533
EA| 4 [ 65| 8 8 | F2 (4D | 97
83 | 45 (5D | 9 EC | 6E | 4C | 90
5C | 33 | 98 | BO - 4A | C3 | 46 | ET

FO | 2D [AD| G5 8C | D8 | 95 | A6

SUBSTITUTION BYTE TRANSFORMAION
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SBOX

»
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B | FE | D7 | AB 76
1 CA 82 Cc9 | TD | FA 59 47 FO | AD | D4 | A2 | AF | 9C | A4 T2 Co
2 B7 | FD 93 26 36 3F F7 cC 34 AS ES F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A o7 12 80 E2 | EB 7} B2 75
4 09 83 2C | 1A 1B | 6E | 5A | AOD 52 3B | D6 B3 29 E3 2B 84
5 53 D1 o0 | ED | 20 FC B1 5B | 6A | CB | BE 39 4A 4C 58 CF
6 DO | EF | AA | FB 43 4D 33 85 45 F9 0z TE 50 3C 9F | A8
) 7 51 A3 40 8F 92 9D 38 F5 BC | B6 | DA | 21 10 FF F3 D2
! 8 CD | 0C 13 EC | 5F 97 44 17 C4 | AT | TE | 3D 64 5D 19 73
9 60 81 4F | DC | 22 2A 90 88 46 EE | B8 14 DE | 5E 0B | DB
A EO 32 3A | 0A 49 06 24 5C | C2 D3 | AC | 62 91 95 E4 79
B E7 | C8 37 6D | 8D | D3 4E | A9 | 6C 56 F4 | EA 65 TA | AE 08
C BA 78 L 2B 1C | A6 B4 Co6 ES | DD | 74 1F 4B | BD | 8B | 8A
D 70 3B B5 66 48 03 F6 0OE 61 35 57 B9 86 C1 1D | 9E
E El F8 98 11 69 D9 | 8E 94 9B E 87 E9 | CE 55 28 DF
F 8C | Al 89 oD BF | Eé6 42 68 41 o9 2D OF BO 54 BB 16

INVERSE BOX

v
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 52 09 | 6A | D5 | 30 36 | A5 | 33 | BF | 40 | A3 | 9E | 81 F3 | D7 | FB
1 7C | E3 | 39 82 | 9B | 2F | FF | 87 34 | BE | 43 44 | C4 | DE | E9 | CB
2 54 | 7B | 94 32 | A6 | C2 | 23 | 3D |EE | 4C | 95 | 0B | 42 | FA | C3 | 4E
3 08 | 2E | Al 28 | D9 | 24 B2 | 76 | 5B | A2 | 49 | 6D | 8B | D1 25
4 T2 F8 | F6 64 36 68 98 16 | D4 | A4 | 5C | CC | 5D | 65 Boe | 92
5 6C | 70 48 50 | FD | ED | B9 | DA | 5E 15 46 57 | AT | 8D | 9D | 84
6 90 | D8 | AB| 00 | 8C | BC | D3 | 0A | F7 | E4 | 58 05 BS | B3 | 45 06
. 7 DO | 2C | 1IE | 8F | CA | 3F | OF 02 | C1 | AF | BD | 03 01 13 | 8A | 6B
8 3A | 91 11 41 4F 67 | DC | EA | 97 F2 | CF |CE | FO | B4 | E6 | 73
9 9 | AC | 74 22 E7 | AD | 35 85 E2 | F9 37 E8 | 1C | 75 | DF | 6E
A 47 F1 1A | 71 1D | 29 | C5 89 6F | B7 | 62 [ OE | AA | 18 | BE | 1B
B FC| 56 | 3E | 4B | Co6 | D2 | 79 20 | 9A | DB | CO [ FE | 78 | CD | 5A | F4
C 1IF | DD | A8 | 33 88 07 | C7 | 31 B1 12 10 39 AT 80 | EC | 5F
D 1] 51 TF | A9 | 19 B5 | 4A | 0D | 2D | E5 | 7TA | 9F 93 | C9 | 9C | EF
E A0 | EO | 3B | 4D | AE | 2A | F5 BO | C8 | EB | BB | 3C | 83 53 99 61
F 17 | 2B | 04 | 7E | BA | 77 | D6 | 26 El 69 14 63 55 21 ocC | 7D
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ShiftRows Transformation

The first row of State is not altered. For the second row, a 1-byte circular left shift is performed.
For the third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular
left shift is performed. The inverse shift row transformation, called InvShiftRows, performs the
circular shifts in the opposite direction for each of the last three rows, with a 1-byte circular right
shift for the second row, and so on.

87 F2 [ 4D | 97 81| F2 14D | 97

EC| 6E | 4C | 90 6E | 4C | 9 | EC

JA| (3| 4o | ET — 46 | ET|4A| 3

BC | DE| 9 | A6 Ab | 8C | D8 | 95
S0 | F1a | iz | 13 d___—r| | l | lq__—-i- fia | Bz 3| o
o | Faq | 5 '.,—i-| | | | |—!-1 Foq | Fopy | 5
s-. -r- 5 5 = _-:_ s- 5 s-
30 | F31 | Fa2 | Fa3 . I I I | — 33 [ Fap | Faa | Fa2

SHIFT ROW TRANSFORMATION

MixColumn Transformation

Each byte of a column is mapped into a new value that is a function of all four bytes in
that column. Multiplication of a value by (i.e., by {02}) can be implemented as a 1-bit left shift
followed by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value
(prior to the shift) is 1. Thus, to verify the MixColumns transformation on the first column
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01
01
03

01
01

] L | ¥ ¥
=—

—
[Fr—r=———
- fnd Lad

Spgo | o | Soz | Soa Fon -’;J.l -'-'::._ 3
Fpo | S0 | 51z | S3 -'-'.:ul ‘:-:I,I -'-'.1. 1a
Sa0 | F2a | 52z | 923 -"":n -F.z.l -"'.*_: 5'1.3
Fao | F3 | 53z | a3 Fap | &ag | F 333
01 01 Xon 501 T e 503 .'i.?;._.;;. .5':]_[ .S'E|_1- 1IEI.'1'
03 01 1o 511 5§12 513 | _ 55_[I .‘l'r|_| .‘n"'[_l .'97'[_3,
02 03 530 531 532 §a 3 .';I:_u_n 531 Sr:_'.- _1|'r3__-1-
01 02| $3p 531 S32 Sa3 Si0 S31  S32 S
Sy = (250 ) P (35 ;) D52 ;P 53y
51 = So, @ (2 =5 ) B (3 =52,) P 53
55y = So @5 ;P (252 ) D (3=53,)
S3,;, = (38 ) D5y ;DS ;D (253 )
87 | F2 | 4D | 97 47 | 40 | A3 | 4C
6E | 4C | 90 | EC v (D4 T | 9F
46 | ET | 4A | C3 — 94 | E4 | 3A | 42
Ab | BC | D& | 95 ED | A5 | A6 | BC
(102} - {87}) @ ({03} - {6E}) @ {46 @® [Ab} = {47}
{87} @ ({02} - {6E}) @ ({03}~ {46}) D {A6} = {37}
{87} @ [6E} @ (102} - {46}) & (103}~ {A6}) = {94}
(103} - {87}) @ [6E] @ {46] @ ({02}~ {A6}) = {ED]

(02} « [87) 0001 0101
[03}-[6E} = 1011 0010
[46) 0100 0110
[A6) = 1010 0110
0100 0111 = {47}

MIX COLOUMN TRANSFORMATION
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AddRoundKey Transformation

The 128 bits of State are bitwise XORed with the 128 bits of the round key. The operation is
viewed as a columnwise operation between the 4 bytes of a State column and one word of the
round key; it can also be viewed as a byte-level operation

47 40 | A3 [ 4C AC | 19 28 [ 57 EB | 50 | BB | 1B
37T | D4 [ 70 | 9F 77 |FA | D1 | 5C 40 | 2E | Al 3
04 | E4 | 3A | 42 H | 66 | DC | 29 | 00 = F2 | 38 13 42
ED | A5 | A6 | BC F3 | 21 41 | 6A 1IE | &84 E7T | D6

AES Key Expansion

The AES key expansion algorithm takes as input a four-word (16-byte) key and produces a linear array of
44 words (176 bytes).This is sufficient to provide a four-word round key for the initial AddRoundKey stage
and each of the 10 rounds of the cipher.

KeyExpansion (byte key[16], word w[44])

{

word temp

for (i = 0; i <4; i++) w[i] = (key[4*i], key[4*i+1],
key[4*i+2],

key[4*i+3]);

for (i=4;i<44;i++)

{

temp = w[i—1];

if (i mod 4 = Q) temp = SubWord xor (RotWord (temp))
Rcon[i/4];

w[i] = w[i-4] xor temp

}

}

1. RotWord performs a one-byte circular left shift on a word. This means that an input word [BO,
B1, B2, B3] is transformed into [B1, B2, B3, BO].
2. SubWord performs a byte substitution on each byte of its input word, using the S-box.

3. The result of steps 1 and 2 is XORed with a round constant Rcon[j]
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AES KEY EXPANSION

2.16 RC4 ENCRYPTION ALGORITHM

RC4 is a stream cipher and variable length key algorithm. This algorithm encrypts one byte at a
time (or larger units on a time).

A Kkey input is pseudorandom bit generator that produces a stream 8-bit number that is
unpredictable without knowledge of input key, The output of the generator is called key-stream,
is combined one byte at a time with the plaintext stream cipher using X-OR operation.

Example:

RC4 Encryption
10011000 ? 01010000 = 11001000

RC4 Decryption
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11001000 ? 01010000 = 10011000

1) Key-Generation Algorithm —

A variable-length key from 1 to 256 byte is used to initialize a 256-byte state vector S, with
elements S[0] to S[255]. For encryption and decryption, a byte k is generated from S by selecting
one of the 255 entries in a systematic fashion, then the entries in S are permuted again.

Key-Scheduling Algorithm:

Initialization: The entries of S are set equal to the values from 0 to 255 in ascending order, a
temporary vector T, is created.

If the length of the key k is 256 bytes, then Kk is assigned to T. Otherwise, for a key with length(k-
len) bytes, the first k-len elements of T as copied from K and then K is repeated as many times as
necessary to fill T. The idea is illustrated as follow:

for
i =0 to 255 do S[i] = i;
T[(i] = K[i mod k - len];

we use T to produce the initial permutation of S. Starting with S[0] to S[255], and for each S[i]
algorithm swap it with another byte in S according to a scheme dictated by T[i], but S will still
contain values from 0 to 255 :

j = 0;

for
i =0 to 255 do
{

jo= (G + SIi]

+ T[i])mod 256;
Swap(S[i], S[jl);
}

2) Pseudo random generation algorithm (Stream Generation):

Once the vector S is initialized, the input key will not be used. In this step, for each S[i] algorithm
swap it with another byte in S according to a scheme dictated by the current configuration of S.
After reaching S[255] the process continues, starting from S[0] again

j—/j:O;
while (true)

i = (1 4+ 1)mod 256;
+ S[i])mod 256;
il, S[31);
i] + S[j])mod 256;
].
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3) Encrypt using X-Or()

Initial Vector (IV) Secret Key

L 3 E

Permutes by PRGA

Cipher/Plain Plain/Cipher
text text

RC4 Algorithm

In the RC4 encryption algorithm, the key stream is completely independent of the plaintext used.
An 8 * 8 S-Box (S0 S255), where each of the entries is a permutation of the numbers 0 to 255,
and the permutation is a function of the variable length key. There are two counters i, and j, both
initialized to 0 used in the algorithm.

The algorithm uses a variable length key from 1 to 256 bytes to initialize a 256-byte state table.
The state table is used for subsequent generation of pseudo-random bytes and then to generate a
pseudo-random stream which is XORed with the plaintext to give the ciphertext. Each element in
the state table is swapped at least once.
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The key is often limited to 40 bits, because of export restrictions but it is sometimes used as a
128 bit key. It has the capability of using keys between 1 and 2048 bits. RC4 is used in many
commercial software packages such as Lotus Notes and Oracle Secure SQL.

The algorithm works in two phases, key setup and ciphering. Key setup is the first and most
difficult phase of this encryption algorithm. During a N-bit key setup (N being your key length),
the encryption key is used to generate an encrypting variable using two arrays, state and key, and
N-number of mixing operations. These mixing operations consist of swapping bytes, modulo
operations, and other formulas. A modulo operation is the process of yielding a remainder from
division. For example, 11/4 is 2 remainder 3; therefore eleven mod four would be equal to three.

Strengths of RC4

The difficulty of knowing where any value is in the table.

The difficulty of knowing which location in the table is used to select each value in the sequence.
Encryption is about 10 times faster than DES.

Limitations of RC4

RC4 is no longer considered secure.

One in every 256 keys can be a weak key. These keys are identified by cryptanalysis that is able
to find circumstances under which one of more generated bytes are strongly correlated with a
few bytes of the key.

A particular RC4 Algorithm key can be used only once.

2.17 KEY DISTRIBUTION

Discussed briefly in Unit 3
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